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Introduction

For signal processing in planar waveguides it is necesary to integrate,
focus, collimate, image or Fourier-analyze guided wave beams by efficient and low
cost lenses and reflectors that have both diffraction-limited performance and low
noise.

Currently the most commonly used guided-wave lens is a geodesic lens that
requires the precision grinding of the non-spherical surface contour for each
1ens[1’2]. Such a fabrication process is quite expensive. Lens effects can also
be obtained by diffraction from surface relief patterns made by much less
expensive planar micro-fabrication techniques. A linearly chirped grating lens
is illustrated in Figure 1., There are two types of diffraction lenses, the
Fresnel lens and chirped grating lens. Fresnel lenses have been reported to give
diffraction-limited focused spot size, 10° angular field of view and reasonable
efficiency at F > 5 [3'5]. In order to improve the efficiency, chirped grating
lenses utlizing volume interaction has been investigated with efficiency reported
as high as 90%[6'9]. The major difference between the Fresnel lens and the
chirped grating lens is the length of the grooves. Both the chirped grating
lenses and the reflectors can be regarded as a form of one dimensional
hologram. The Fresnel lens is a thin phase hologram while the chirped grating
{or reflector) is a thick volume phase hologram. However, they differ from the
conventional holograms in that a much more sophisticated pattern of the index
variation in the longtidudinal direction (i.e. in the depth direction of the
hologram) can be created by photo lithography and planar microfabrication
processes. For example, the material index, the grating groove pattern in both
the transverse and the longitudinal direction and the profile of the grooves can

all be varied, while in conventional holograms only the index variation in the

form of the interference pattern of two optical beams can be created in the
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hologram construction process. For example, Figure 2 shows a curved chirped
grating lens where the grooves are curved to satisfy more accurately the phase

matching condition when the F-number is small or when the grooves need to be ‘ i
1
i
Tong. 3

In order for a diffraction lens to be useful in guided wave signal

p}o;essing applications, it must have a high diffraction efficiency n, a i;
diffraction limited focused spot size o, a reasonably large angular field of view 3
A8, a desired wavelength selectivity A\ and a high signal to noise ratio S/N. 3
In order to realize these performance goals, it is necessary to investigate Both i?
theoretical design methods and microfabrication technologies that will allow us

to take advantage of index and groove shape control in the depth direction to

optimize their design.

Results and Discussion

References 8 to 16 represent research conducted at UCSD supported in part by
AFOSR graht 80-0037. Work reported in references 8, 9 and 12, were also
supported in part by TRW subcontract on Optical Diffraction Elements under A.F.
Prime pontract F33615-82-C-1751. The results reported in these references and
some initial results obtained for chirped grating reflectors will be summarized
in the following discussions. More specifically, we will discuss:

(a) A generalized coupled mode analysis that has been used to design chirped

grating lenses and reflectors.
(b) The realization of such a lens in Ti-indiffused LiNbO3 by depositing
rutile grating grooves.

(c) The difficulties of realizing simultaneously high efficiency and large

angular field of view (or high efficiency and low F-number) in the high
index T-indiffused LiNbO3 waveguides.

(d) The alternative solutions of using the Nby0g and the ion-exchanged LiNb0,

transition waveguides.
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(e) The fundamental limitations of the lens performance due to diffraction

and fabrication tolerance.

Figure 3 illustrates a few examples of chirped grating lenses that can be
designed according to the phase matching conditions of the generalized two-
dimensional coupled mode analysis[lo] for a given set of desired incident and
diffracted beams. Figure 4 shows an example of the calculated efficiency n and
the focused spot size of a F/10 linear chirped grating lenses on LiNbO4
waveguides as a function of the incidence angle when the coupling coefficient Ke
can be large. The general conclusion reached in reference 14 is that diffraction
limited spot size and high efficiency can be obtained on both low index glass
waveguides and high index LiNbO; waveguides and when ch = n/2 and when the

F-number is relatively large (eg. F = 20). However, the angular field of view of

a linearly chirped grating lens may be very small if long grating groove lengths
are needed for small K. to obtain high efficiency. Large angular field of view
at small K. can only be obtained at the expense of lower efficiency. Similarly

the efficiency will drop for small F-number lenses where Ko is small. Thus, in '

order to get a combination of high efficiency and reasonably large angular field
of view {or large n and low F), one must develop materials technology that will
yield large K..

Materials technology (in particular the deposition of Ce0,) to obtain a
large coupling coefficiency in glass waveguide lenses has been developed at UCSD
and high efficiency with 46 = 0.1 radians has been obtained experimenta]ly[13].

The extension of A8 to larger values using shorter groove length is limited

primarily by the diffraction into higher orders of diffraction when the Q-factor

(Q = aned/AZ) is less than 10[15’17]. The situation is quite different in

[ LiNbO3 waveguides[lzl.

e

Ef Experimentally, we have investigated different materials and processes for
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the fabrication of grating grooves on LiNbO3 waveguides that will yield
reasonably large Ke va]ues[g'g'lz]. Figure 5 shows the calculated Ke that can be
obtained by etching LiNbO3 and by depositing Ti0, for two different mode
depthstlz]. Notice that high resolution thin grating patterns and moderately
large K. can more easily be obtained by depositing thin Ti0, layers on
wavgeguides. For a given mode depth, a limit on the Ke value is the Ti0,
thickness (or the etched depth) within which one and only one single TE mode will
propagate. A small mode depth is also necessary in order to get large Kc. Hard
transparent and durable films of TiO, with a 2.6 refractive index have been
obtained in our laboratory by electron beam evaporation of Ti followed by
oxidation in an oxygen atmosphere at 450°C. However, the practical mode depth of
the Ti-indiffused waveguide for single mode propagation is limited by the minimum
diffusion time required for a given thickness of deposited Ti below which there
will be residue of undiffused Ti compound left on the waveguide surface. A
shallower mode depth (i.e. a larger Kc) can be obtained when water vapor is added
in the diffusion process[lal. Figure 6 shows that the largest an ¢e (i.e. the
change of Noff in LiNbO3 single mode waveguide with or without Ti0, overlay) that
we have been able to obtain experimentally is .014. However, mode conversion to
substrate modes begins at 5008 of Ti0, caused by the step discontinuity of the
deposited layer. Thus the maximum usable Aneff in LiNbOg Ti-indiffused
waveguides is only 0.005,

In short, we have found that the limitations in K. were caused primarily by
the mode depth of the Ti-indiffsed waveguide. The small K. obtained in the Ti-
indiffused waveguide severely limits the angular field of view of any efficient
chirped grating lens. Our data have also shown that it is difficulty to
reproduce the Aneff in Ti-indiffused waveguides. On the other hand, we have also

found substantial coupling of the guided wave power into the substrate modes

.............

. ]
v
Y,




A el At e

W O ETIRTATUTR TV TR RN

under certain circumstances. It is caused primarily by the closeness of the ng¢f

of the guided wave mode to the substrate index n Therefore, we may attribute

s
the difficulties of both the very small angular field of view and the substrate
mode conversion to the basic properties of Ti-indiffused waveguides, namely large
mode depth and ("eff - ns)/nS << 1,

As shown in Figure 7, all our gratings and grating lenses are fabricated by
replication of the Cr mask pattern onto a LiNbO; waveguide spin coated with
photoresist by the conformable contact printing method. The Cr masks have been
made by electron beam lithography at the NSF National Research and Resource
Facility for Submicron Structures at Cornell University, Ithaca, New York. A Ti
layer is then evaporated by the electron beam evaporation method onto the sample
that already has the desired resist pattern, and a Ti grating or grating lens
pattern is obtained using the lift-off technique. Patterns of up to one um line
width seem to be able to be reproduced by this process. The lift-off method was
used instead of the more commonly used wet etching method because it gives a
higher resolution. TiQy patterns are obtained from Ti patterns by oxidation.
Alternatively CyFg has been used in our laboratory for reactive ion beam etching
of arating grooves[lg'ZOJ. The etching rate is about 600A/min at a beam current
of .3mA/cm2.

Clearly we need an alternate waveguide in LiNbO3 that has small mode depth,
large ngef, low attenuation and small inplane-scattering noise. If Ti-indiffused
waveguides must be used for other elements such as acousto optical diffraction in
the r.f. spectrum analyzer, then the alternate waveguide may be used as a
transition waveguide interconnecting two sections of a Ti-indiffused wavequide.
After examining the various possibilities we have come to two solutions. The
first solution would be to fabricate a NbyOg transition waveguide as shown in

Figure 8. The enerqgy in the LiNb0j indiffused waveguide is lifted into the input

sicnd
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tapered section of the Nb,0g waveguide, diffracted by the grating lens and then

converted back into the LiNbO3 waveguide mode at the output tapered section. The
best total measured insertion loss of the transition including the taper is

0.8 dB. Because of the large index of Nb,Og guiding layer, small mode depth and
large K. coefficient was obtained. The measured throughput efficiency and
angular field of view of the lens are 85% + 5% and 4‘degrees for an F = 12 lens
with Amin = 1,73 um, Amax = 3.45 um and 40 um groove length. The second
potential solution is to make a transition waveguide interconnecting two sections
of a Ti-induffused waveguide by proton exchange[g]. An ion exchanged chirped
grating lens can be made by employing a second ion exchange process using an Al
mask. In this case, there is no observable substrate mode conversion effects,
since the ng¢¢ of the guided mode is quite high, approximately 2.265. The
measured throughput efficiency and the angular field of view are 75% and 4
degrees for the same lens pattern as that on the Nb,0g transition waveguide when
the groove is 80 um. Alternatively the ion exchange process may be used to make
a chirped grating pattern of high index regions inside a Ti-indiffused waveguide
through an A2 mask.

The performance of all the waveguide lenses is fundamentally limited by the
diffraction properties of chirped gratings in two different ways. (a) Limit-
ations in the coupling coefficient means that tens of micrometers of groove
length is required to obtain high efficiency. For a linear chirped grating lens
this means that phase distortions (i.e phase mismatch) will occur at long groove
Tength or small F numbers. Figures 9 and 10 show the calculated and measured
maximum diffraction efficiency and angular field of view of a linearly chirped
grating lens as a function of groove length (or K. , with ch = n/2)[14]. The
drop in efficiency is caused primarily by phase distortion, especially for small

F-number lenses. Alternatively as shown in Figure 3, curved chirped grating
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lenses may be used to provide perfect phase matching for long groove length and
small F-numbers. However, the angular field of view of chirped grating lenses is
extremely small. Ultimately, the smallest F-number of a grating lens will be
limited by the minimum grating periodicity Amin that can be etched or
deposited., This limitation is expressed as

min Am'in neff“o
where Ao is the free space wavelength. (b) Limitation in grating periodicity
implies also that Raman-Nath diffraction may occur when the groove length is too
short. A rigorous coupled mode analysis has been formulated by Moharam and

Gaylord[15’17] that gave l/p2 (p = xg/Azne A"eff) as the upper bound of the

ff
fraction of power diffracted into higher orders for constant periodicity
gratings. Their calculated results have been confirmed experimentally by
us[15]. Thus the p factor imposes another limitation on the diffraction

efficiency of chirped grating lenses.

Summary

In conclusion, in integrated optical circuits one must combine materials
technology with theoretical analysis in order to realize the desired performance
goals of chirped grating lenses. Efficient chirped grating lenses can be
realized effectively in both the glass and the LiNb0; waveguides. An angular

field of view of several degrees may be obtainable for lenses in LiNbOj.
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